If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50z^2+20z-16=0
a = 50; b = 20; c = -16;
Δ = b2-4ac
Δ = 202-4·50·(-16)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60}{2*50}=\frac{-80}{100} =-4/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60}{2*50}=\frac{40}{100} =2/5 $
| 8t=-18+7t | | 4x+7+5x=106 | | -11+26=-3(x+8) | | 6-3d=5(2-d | | 9x^2+8x=3 | | 6y+9=3(2y+3 | | X-6=4-2(x+8) | | Y=2/5x+-4 | | (x−5)=2(x+5) | | -8z-3z=3z-3+2z | | 5a-1-8a=29 | | 2+2v=-12 | | -48=-2a+7a-88 | | 34.1(–5.5)=y | | -4=6+5u | | (4/x-3)-(8/2x+5)-(3/x-3)=0 | | 3(x+3x)-(2+1)=-(4x+1) | | 4(b-1=-4+4b | | x+4/4=5-(x+2)/3 | | 6x=8=-40 | | 2(3m-2)+18=5m | | 3x+20-9x=-16 | | -5+9x+2x^2=0 | | 2z–3=3 | | (x−5)=2(x+5) | | 2v+5=-3 | | 6a-2-3a=-32 | | 9x=3x–36 | | 3x+5=7x-43 | | -15=3v+3 | | 5+4x-5x=0 | | 8x-15+2=3 |